CONNECTED AIRCRAFT

....

A FRAMEWORK FOR INNOVATION

....

.........

The future ATM system will rely on extensive information exchange

New entrant community is especially dependent on data communications

Current voice and data communication systems do not scale to meet anticipated demand

Purpose

The Connected Aircraft (CA) concept: a framework to accommodate the expected growth in demand for information exchange between the aircraft and relevant aviation stakeholders.

Our goal: Improve airline/operator operational efficiency & sustainability, and accommodate the needs of the new entrant community.

- Use new and existing connectivity solutions enabled through performance -based requirements
- Enable digital interaction between stakeholders
 - Support Trajectory based operations (TBO)
 - Provide enhanced weather/situational awareness
 - Communications to support new entrant operational needs
- Complement CPDLC

Opportunity

Opportunities to improve the Air

-Ground information exchange of tomorrow

Today Tomorrow Flight crew Flight crew Voice Voice Air Traffic Management Air Traffic Management **Expanded** Air Traffic Services Air Traffic Services via voice via voice & datalink Aviation datalinks Aviation datalinks & datalink applications applications with broadband ATS high-performance, high-performance, (Aviation datalink(s) to aircraft) (multi-datalinks to aircraft) EFB limited bandwidth EFB limited bandwidth AOC Limited ATS Ground networks Ground networks 00 00000 **Flight Deck** Flight Deck * domain guard 0 0 Inflight Internet Connectivity Performance-based links **Flight Operations Center Flight Operations Center** variable performance, variable performance, broadband broadband Flight Operational Control **Flight Operational Control** services via voice & datalink services via voice & datalink (Aviation datalink(s) to aircraft) (multi-datalinks to aircraft) Supplemental Data Service Provider Supplement Data Service Provider end-points end-points · Aviation weather Aviation weather Turbulence information Turbulence information Airline data Airline data

Overarching Principles

CONCEPT

The CA concept enables stakeholders to use both aviation -specific and commercial communication systems in concert to meet their A/G information exchange needs.

ATTRIBUTES

The key performance attributes offered by CA will be able to be tailored to the individual needs of the application (data integrity, availability, continuity, confidentiality, and transaction time).

USE OF

Specific performance requirements are determined by the use of information.

Planning & Logistics		Pre / Post Flight Tools		Situational Awareness	Communicate	Aviate / Navigate	
Trip Brief	Flight Plan	Weight & Balance	Trip/Mx Logs	Moving Map Charts	Voice Datalink	Navigation Landing	
		Incre	asing Porfe	ormance Requ	iromonte	Landing	

CONNECTED AIRCRAFT USE CASE SCENARIOS

6

SCENARIO

Connected Aircraft data sharing and crowdsourcing

SCENARIO

Connected Aircraft data sharing and crowdsourcing

03

Ability for aircraft to see weather activity is limited by range of onboard weather radar

Participating aircraft send weather radar data to Data Service Provider (DSP) 05

DSP provides composite radar picture to participating FOCs

FOCs send composite in form ation to their aircraft

Result

ADDITIONAL CONSIDERATIONS

9

Importance of Interoperability and Standardizations

- Technology will evolve and be incorporated by stakeholders at different rates
- Important to consider mixed environment
 - Equipment on aircraft
 - ATM in frastructure
- Interoperability is critical to achieving widespread adoption of these capabilities
- Standards should be adaptable to keep pace with evolving technology

Keys to Success

01

Focus on performance to enable advanced information exchanges (technology agnostic)

02

Harness new and existing connectivity solutions, regionally and globally 04

Ensure standards are adaptable

Internet Protocol Suite (IPS)

Next Generation Networking for the Future of Aviation

Need and Opportunity

The future ATM system will rely on extensive information exchange

• IPS enables increased throughput on aviation subnetworks

New entrant community is especially dependent on data communications

IPS could enable ground connectivity between ATM and UAS ground controllers

Current voice and data communication systems do not scale to meet anticipated demand

- IPS contributes secure networks
- IPS enables use of aviation and commercial subnetworks at multiple levels of performance

SDO & Committee	STANDARD	2016 2017	2018 2019	2020	2021	2022	2023	2024	COMMENTS
AEEC IPS	ARINC 658	IPS Roadmap	1	PS Roadmap			Ongoing IPS Standard Roadmap maintenand	ls e	ADIM 15.004 (complete)
	ARINC 858		IPS Specification	art 1 – Airborne IPS System	Part 1 Supple	ment 1 🔀 🛨			APIM 15-004 (complete) APIM 15-004A (complete) APIM 15-004B (in-progress)
			Pa	art 2 – IPS Gateway A-G Interop	Part 2 Supple	ment 1 🔆 🕇			
AEEC DLK	ARINC 631-9				IPS-over-VDLr	2	₹★		APIM 17-002B (in-progress)
RTCA SC-214 / EUROCAE WG-92	DO-224E				VDLm2 MASPS	FRAC	- inal decision on link	security to be	TOR V13, 9/2020
	DO-281D / ED-92D	VDLm2 MOPS							
RTCA SC-223 / EUROCAE WG-108	DO-379 / ED-262	IPS Prof	iles 🗡		IPS Profiles	Rev A. 🗙 🕇	May slip by one quart	er - TBC	TOR V6, 12/2020
	DO-xxx / ED-ууу		IPS MASPS / 0	ЭМ					TOR V6, 12/2020
RTCA SC-228	DO-377	C2 Link Systems	MASPS	MASPS Rev A.	MA	SPS Rev B. 🤸	C2 standa informatio	rdization effort is for n purposes as there	TOR V11, 3/2021
	DO-362	MOPS 🔶 C2	Link Systems MOPS (Terrest	rial) Rev A.	*	Σ	Rev B. E.g., IPS id acceptable	dentified as an MOC in DO-377A.	TOR V11, 3/2021
ICAO DCIWG / WG-I	Doc. 9896 Ed.2	IPS TM/GM							Complete
	Doc. 9896 Ed.3	IPS	Technical Manual and Guidan	ce Material	E Advanu	B Ed.3	Ed.3 Unedited	Doc 9896 Ed.3 Publication	Job Card CP-DCIWG.006.04
	Annex 10, Vol II Annex 10, Vol III	SARPS – C	omm Procedures & Systems	SARPS	Validation In		Final	Applicability Nov-2024	Job Card CP-DCIWG.006.04
	Doc. 10090		Security Services f	or Aeronautical Comm	nunications	Ed.1 Advanced		Doc 10090 Ed.1 Publication	Job Card CP-DCIWG.007.05
	Doc. 10094	Secure Dialog Service Tech	Manual / ConOps / Guidance		\rightarrow	\rightarrow		Doc 10094 Ed.1 Publication	Job Card CP-DCIWG.007.05
	Doc. 10095	DTLS selected in lieu of sDS for IPS; sDS for OSI only.	Coordination with ICAO TFSG DIWG	PKI Security Policy	E Advane	1 Ed.1 Ed.1	Ed.1	Doc 10095 Ed.1 Publication	Job Card CP-DCIWG.007.05
	Doc. 10145			Security Risk As	sessment _{Advance}	1 Ed.1.	Ed.1	Doc 10145 Ed.1 Publication	Job Card CP-DCIWG.007.05
ICAO DCIWG / WG-M	Doc. 9776				Ţ	DLm2 Tech Ma	nual RTCA/EUR	OCAE and AEEC to ntly, and provide material to ICAO	Planned
	Doc. 9880			ATN TM / GM		*	p an out		In-progress
	Legend:	In Progress Planned	Proposed TBD Pro	edecessor	Å Interim ⊠Deliverable ★	Key Deliverable ▼Mee	ting ▼ Joint Meeting		

ATN/IPS Gateway High-level Architecture

Boeing ecoDemonstrator Activities

- Test FANS -1/A and B1 messaging over IPS using VDLM2 on continental US flights, connected to FANS-1/A over IPS ground end system
- Test B1 messaging over IPS using VDLM2 on European continental flight, connected to B1 over OSI ground end system

ANSP = Air Navigation Service Provider (e.g. FAA) CSP = Communications Service Provider (e.g. ARINC, SITA) ULCS = Upper Layer Communication Service ASE = Application Service Element

Copyright © 2021 Boeing. All rights reserved

Doc 9965 AN/483

Manual on Flight and Flow — Information for a **Collaborative Environment** (FF-ICE)

> Approved by the Secretary General and published under his authority

First Edition - 2012

International Civil Aviation Organization

FF-ICE

- Modernizing flight planning & filing
- Leverages SWIM to provide machine-to-machine interactions
- Migration from fire-and-forget to continuous, collaborative planning
 - Provides feedback What will you get based on the proposed filed plan?
- Globally incremental implementation not a big-bang
- Introduces fit-for-purpose protocols:

Source: Wikipedia Teletype Model 33

FF-ICE, Release 1 Status

- Release 1: Flight planning and filing
 - Proposals for Amendment to PANS 4444, Annex 2, and consequential amendments completed
 - Guidance material in final review Vol II to ICAO Doc. 9965
 - Flight Information Exchange Model (<u>FIXM</u>) data standard defined with scheduled release cycle for updates

FF-ICE/R2 In-flight strategic replanning

- Defining processes for in-flight replanning
 - Automated interactions
 - Leverage Electronic Flight Bag (EFB)
 - Strategic planning with TFM to obtain Agreed Trajectory
 - Agreed Trajectory continually updated
- Multiple tabletops with operational representation
- Operations Demonstrated within the Multi-Regional TBO Demonstration
 - Incorporated existing systems through Florida Test Bed
 - Planning a live flight demonstration of capabilities within Multi-Regional TBO

Multi-Regional TBO Demonstration (May 2022) included FF-ICE, Release 2 elements

Accelerating Trajectory Sharing

Baseline-2 ADS-C defines Extended Projected Profile (EPP)

Leverage New Technologies to Accelerate Trajectory Sharing

RTCA, Inc. 1150 18th St. NW, Suite 910 Washington, D.C. 20036-4001 U.S.A.

Safety and Performance Requirements Standard for Baseline 2 ATS Data Communications (Baseline 2 SPR Standard) Volume 1 of 2

RTCA DO-350A Supersedes RTCA DO-350 March 17, 2016 Prepared by: SC-214 © 2016 RTCA, Inc.

- Improve trajectories through aircraft data
- Baseline-2 defines the EPP
- Investigating <u>alternative</u> means of sharing aircraft-derived trajectory, via:
 - Aircraft Interface Device (AID)
 - Electronic Flight Bag (EFB)
 - Broadband connection
- AID enables access to broader set of data than EPP through avionics beyond the FMS

Expected Supporting Equipage

• US transport fleet

- Two-way connectivity (EFB to avionics) dominant in a few years
- Driven by internal business case not ATM initiatives
- ATM can leverage to accelerate provision of "EPPlike" data for ATM

Application of Aircraft-Derived Trajectories

UPDATES TO TRAJECTORY PREDICTED BY THE FMS

TRAJECTORY NEGOTIATION UPON REQUEST BY AIRSPACE USER

AUTOMATED SYNCHRONIZATION PRIOR TO CLEARANCE ISSUANCE

